Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 715
Filtrar
1.
Respir Res ; 25(1): 148, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555458

RESUMO

BACKGROUND: Astaxanthin (AXT) is a keto-carotenoid with a variety of biological functions, including antioxidant and antifibrotic effects. Small airway remodeling is the main pathology of chronic obstructive pulmonary disease (COPD) and is caused by epithelial-to-mesenchymal transition (EMT) and fibroblast differentiation and proliferation. Effective therapies are still lacking. This study aimed to investigate the role of AXT in small airway remodeling in COPD and its underlying mechanisms. METHODS: First, the model of COPD mice was established by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). The effects of AXT on the morphology of CS combined with CSE -induced emphysema, EMT, and small airway remodeling by using Hematoxylin-eosin (H&E) staining, immunohistochemical staining, and western blot. In addition, in vitro experiments, the effects of AXT on CSE induced-EMT and fibroblast function were further explored. Next, to explore the specific mechanisms underlying the protective effects of AXT in COPD, potential targets of AXT in COPD were analyzed using network pharmacology. Finally, the possible mechanism was verified through molecular docking and in vitro experiments. RESULTS: AXT alleviated pulmonary emphysema, EMT, and small airway remodeling in a CS combined with CSE -induced mouse model. In addition, AXT inhibited the EMT process in airway cells and the differentiation and proliferation of fibroblasts. Mechanistically, AXT inhibited myofibroblast activation by directly binding to and suppressing the phosphorylation of AKT1. Therefore, our results show that AXT protects against small airway remodeling by inhibiting AKT1. CONCLUSIONS: The present study identified and illustrated a new food function of AXT, indicating that AXT could be used in the therapy of COPD-induced small airway remodeling.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Camundongos , Animais , Fumar Cigarros/efeitos adversos , Remodelação das Vias Aéreas , Simulação de Acoplamento Molecular , Transdução de Sinais , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Tabaco/toxicidade , Xantofilas
2.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L431-L439, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349118

RESUMO

Chronic obstructive pulmonary disease (COPD) is caused by cigarette smoke (CS) exposure but can often be progressive even in former smokers. Exposure of mice to CS for 22 wk causes emphysema, but whether emphysema persists after cessation of CS exposure is not clear. The purpose of this study was to determine whether emphysema persists in mice following a recovery period of 22 wk and whether a susceptibility factor, such as deficiency in the Bcl-2-interacting killer (Bik), is required for this persistence. Therefore, bik+/+ and bik-/- mice at 6-10 wk of age were exposed to 250 mg/m3 total particulate matter of CS or filtered air (FA) for 3 or 22 wk and were kept in FA for an additional 22 wk. Lungs were lavaged to quantify inflammatory cells, and sections were stained with hematoxylin and eosin to assess severity of emphysema. Exposure to CS for 3 wk increased the number of inflammatory cells in bik-/- mice compared with bik+/+ mice but not at 22 wk of exposure. At 22 wk of CS exposure, extent of emphysema was similar in bik+/+ and bik-/- mice. However, when mice were exposed to CS over the first 22 wk and were kept in FA for an additional 22 wk, emphysema remained similar in bik+/+ mice but was enhanced in bik-/- mice. These findings link increased inflammation with persistent emphysematous changes even after smoking cessation and demonstrate that a preexisting susceptibility condition is required to sustain enhanced emphysema that was initiated by long-term CS exposure.NEW & NOTEWORTHY Exposure of mice to cigarette smoke (CS) for 22 wk causes emphysema, but whether emphysema persists after an additional period of 6 mo after cessation of CS exposure has not been reported. In addition, the role of preexisting susceptibility in enhancing the persistence of CS-induced emphysema after exposure to CS has stopped has not been shown. The present study shows that a preexisting susceptibility must be present to enhance CS-induced emphysema after cessation of CS exposure.


Assuntos
Fumar Cigarros , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Camundongos , Modelos Animais de Doenças , Pulmão , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/etiologia , Enfisema Pulmonar/induzido quimicamente
3.
Nutrients ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337717

RESUMO

Lung inflammation and alveolar enlargement are the major pathological conditions of chronic obstructive pulmonary disease (COPD) patients. Rice bran oil (RBO), a natural anti-inflammatory and antioxidative agent, has been used for therapeutic purposes in several inflammatory diseases. This study aimed to investigate the anti-inflammatory and antioxidative effect of RBO on a cigarette smoke extract (CSE)-induced emphysema model in mice. The results indicated that CSE significantly induced airspace enlargement in mouse lung. Increased inflammatory cells, macrophage, and TNF-alpha levels in bronchoalveolar lavage fluid (BALF) were noticed in CSE-treated mice. RBO (low and high dose)-supplemented mice showed decreased total BALF inflammatory cell, macrophage, and neutrophil numbers and TNF-alpha levels (p < 0.05). Additionally, the administration of RBO decreased the mean linear alveolar intercept (MLI) in the CSE-treated group. Additionally, RBO treatment significantly increased the total antioxidant capacity in both mouse BALF and serum. However, RBO did not have an effect on the malondialdehyde (MDA) level. These findings suggested that RBO treatment ameliorates lung inflammation in a CSE-induced emphysema mice model through anti-inflammatory and antioxidant pathways. Therefore, the supplementation of RBO could be a new potential therapeutic to relieve the severity of COPD.


Assuntos
Fumar Cigarros , Enfisema , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Animais , Antioxidantes/metabolismo , Pulmão/patologia , Óleo de Farelo de Arroz/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Anti-Inflamatórios/uso terapêutico , Pneumonia/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Enfisema/induzido quimicamente , Enfisema/tratamento farmacológico , Produtos do Tabaco
4.
Mil Med ; 189(3-4): e907-e910, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37769213

RESUMO

Combined pulmonary fibrosis and emphysema (CPFE) is a clinical syndrome of upper-zone-predominant emphysema on high-resolution CT and a peripheral and basal-predominant diffuse pulmonary fibrosis. Multiple occupational and inhalational exposures have been associated with CPFE. We describe a U.S. veteran, who developed CPFE after a prolonged, intense exposure to trichloroethylene as an aircraft maintenance worker. We believe that this may be another example of occupational-associated CPFE.


Assuntos
Enfisema , Enfisema Pulmonar , Fibrose Pulmonar , Tricloroetileno , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/diagnóstico por imagem , Tricloroetileno/toxicidade , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/complicações , Enfisema/etiologia , Enfisema/complicações , Fibrose , Estudos Retrospectivos
5.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L98-L110, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050687

RESUMO

miR-146a, a microRNA (miRNA) that regulates inflammatory responses, plays an important role in many inflammatory diseases. Although an in vitro study had suggested that miR-146a is involved in abnormal inflammatory response, being a critical factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), in vivo evidence of its pathogenic role in COPD remains limited. Eight-week-old male B6(FVB)-Mir146tm1.1Bal/J [miR-146a knockout (KO)] and C57BL/6J mice were intratracheally administered elastase and evaluated after 28 days or exposed to cigarette smoke (CS) and evaluated after 5 mo. miR-146a expression was significantly increased in C57BL/6J mouse lungs due to elastase administration (P = 0.027) or CS exposure (P = 0.019) compared with that in the control group. Compared with C57BL/6J mice, elastase-administered miR-146a-KO mice had lower average computed tomography (CT) values (P = 0.017) and increased lung volume-to-weight ratio (P = 0.016), mean linear intercept (P < 0.001), and destructive index (P < 0.001). Moreover, total cell (P = 0.006), macrophage (P = 0.001), neutrophil (P = 0.026), chemokine (C-X-C motif) ligand 2/macrophage inflammatory protein-2 [P = 0.045; in bronchoalveolar lavage fluid (BALF)], cyclooxygenase-2, and matrix metalloproteinase-2 levels were all increased (in the lungs). Following long-term CS exposure, miR-146a-KO mice showed a greater degree of emphysema formation in their lungs and inflammatory response in the BALF and lungs than C57BL/6J mice. Collectively, miR-146a protected against emphysema formation and the associated abnormal inflammatory response in two murine models.NEW & NOTEWORTHY This study demonstrates that miR-146a expression is upregulated in mouse lungs because of elastase- and CS-induced emphysema and that the inflammatory response by elastase or CS is enhanced in the lungs of miR-146a-KO mice than in those of control mice, resulting in the promotion of emphysema. This is the first study to evaluate the protective role of miR-146a in emphysema formation and the associated abnormal inflammatory response in different in vivo models.


Assuntos
Enfisema , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Masculino , Camundongos , Enfisema/etiologia , Inflamação/patologia , Pulmão/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Elastase Pancreática/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética
6.
Biochem Biophys Res Commun ; 694: 149419, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38145597

RESUMO

BACKGROUND: Increasing evidence indicates that bioactive lipid mediators are involved in chronic obstructive pulmonary disease (COPD) pathogenesis. Recently, glycero-lysophospholipids, such as lysophosphatidic acid (LysoPA) and lysophosphatidylserine (LysoPS), have been recognized as significant inflammation-related lipid mediators. However, their association with COPD remains unclear. METHODS: We used an elastase-induced murine emphysema model to analyze the levels of lysophospholipids and diacyl-phospholipids in the lungs. Additionally, we assessed the expression of LysoPS-related genes and published data on smokers. RESULTS: In the early phase of an elastase-induced murine emphysema model, the levels of LysoPS and its precursor (phosphatidylserine [PS]) were significantly reduced, without significant modulations in other glycero-lysophospholipids. Additionally, there was an upregulation in the expression of lysoPS receptors, specifically GPR34, observed in the lungs of a cigarette smoke-exposed mouse model and the alveolar macrophages of human smokers. Elastase stimulation induces GPR34 expression in a human macrophage cell line in vitro. CONCLUSIONS: Elastase-induced lung emphysema affects the LysoPS/PS-GPR34 axis, and cigarette smoking or elastase upregulates GPR34 expression in alveolar macrophages. This novel association may serve as a potential pharmacological target for COPD treatment.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Camundongos , Humanos , Animais , Elastase Pancreática , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema/induzido quimicamente , Lisofosfolipídeos/metabolismo
7.
Int J Chron Obstruct Pulmon Dis ; 18: 2687-2698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022831

RESUMO

Purpose: To investigate the role of the CD40-CD40 ligand (CD40L) pathway in the regulation of Th1, Th17, and regulatory T (Treg)-cell responses in an elastin peptide (EP)-induced autoimmune emphysema mouse model. Methods: BALB/c mice were transnasally treated with EP on day 0, injected intravenously with anti-CD40 antibody via the tail vein on day 33, and sacrificed on day 40. The severity of emphysema was evaluated by determining the mean linear intercept (MLI) and destructive index (DI) from lung sections. The proportions of myeloid dendritic cells (mDCs) and Th1, Th17, and Treg cells in the blood, spleen, and lungs were determined via flow cytometry. The levels of the cytokines interleukin (IL)-6, IL-17, interferon (IFN)-γ, and transforming growth factor (TGF)-ß were detected via enzyme-linked immunosorbent assay. Ifnγ, IL17a, Rorγt and Foxp3 transcription levels were detected via polymerase chain reaction. Results: CD40+ mDCs accumulated in the lungs of EP-stimulated mice. Blocking the CD40-CD40L pathway with an anti-CD40 antibody alleviated Th1 and Th17 responses; increased the proportion of Treg cells; decreased MLI and DI; reduced the levels of cytokines IL-6, IL-17, and IFN-γ as well as the transcription levels of Ifnγ, IL17a, and Rorγt; and upregulated the expression of TGF-ß and Foxp3. Conclusion: The CD40-CD40L pathway could play a critical role in Th1, Th17 and Treg cell dysregulation in EP-mediated emphysema and could be a potential therapeutic target.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Camundongos , Células Th17 , Interleucina-17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ligante de CD40 , Elastina/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Antígenos CD40 , Citocinas/metabolismo , Peptídeos/farmacologia , Fatores de Transcrição Forkhead , Células Th1
8.
Respir Res ; 24(1): 201, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592330

RESUMO

BACKGROUND: Alveolar macrophages (AMs) and AM-produced matrix metalloprotease (MMP)-12 are known to play critical roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). The apoptosis inhibitor of the macrophages (AIM)/CD5 molecule-like (CD5L) is a multifunctional protein secreted by the macrophages that mainly exists in the blood in a combined form with the immunoglobulin (Ig)M pentamer. Although AIM has both facilitative and suppressive roles in various diseases, its role in COPD remains unclear. METHODS: We investigated the role of AIM in COPD pathogenesis using porcine pancreas elastase (PPE)-induced and cigarette smoke-induced emphysema mouse models and an in vitro model using AMs. We also analyzed the differences in the blood AIM/IgM ratio among nonsmokers, healthy smokers, and patients with COPD and investigated the association between the blood AIM/IgM ratio and COPD exacerbations and mortality in patients with COPD. RESULTS: Emphysema formation, inflammation, and cell death in the lungs were attenuated in AIM-/- mice compared with wild-type (WT) mice in both PPE- and cigarette smoke-induced emphysema models. The PPE-induced increase in MMP-12 was attenuated in AIM-/- mice at both the mRNA and protein levels. According to in vitro experiments using AMs stimulated with cigarette smoke extract, the MMP-12 level was decreased in AIM-/- mice compared with WT mice. This decrease was reversed by the addition of recombinant AIM. Furthermore, an analysis of clinical samples showed that patients with COPD had a higher blood AIM/IgM ratio than healthy smokers. Additionally, the blood AIM/IgM ratio was positively associated with disease severity in patients with COPD. A higher AIM/IgM ratio was also associated with a shorter time to the first COPD exacerbation and higher all-cause and respiratory mortality. CONCLUSIONS: AIM facilitates the development of COPD by upregulating MMP-12. Additionally, a higher blood AIM/IgM ratio was associated with poor prognosis in patients with COPD. TRIAL REGISTRATION: This clinical study, which included nonsmokers, healthy smokers, and smokers with COPD, was approved by the Ethics Committee of the Hokkaido University Hospital (012-0075, date of registration: September 5, 2012). The Hokkaido COPD cohort study was approved by the Ethics Committee of the Hokkaido University School of Medicine (med02-001, date of registration: December 25, 2002).


Assuntos
Proteínas Reguladoras de Apoptose , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Camundongos , Apoptose , Estudos de Coortes , Imunoglobulina M , Macrófagos , Metaloproteinase 12 da Matriz/genética , Enfisema Pulmonar/induzido quimicamente , Humanos
9.
J Biol Chem ; 299(8): 105052, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454739

RESUMO

Chronic obstructive pulmonary disease (COPD), which includes emphysema and chronic bronchitis, is now the third cause of death worldwide, and COVID-19 infection has been reported as an exacerbation factor of them. In this study, we report that the intratracheal administration of the keratan sulfate-based disaccharide L4 mitigates the symptoms of elastase-induced emphysema in a mouse model. To know the molecular mechanisms, we performed a functional analysis of a C-type lectin receptor, langerin, a molecule that binds L4. Using mouse BMDCs (bone marrow-derived dendritic cells) as langerin-expressing cells, we observed the downregulation of IL-6 and TNFa and the upregulation of IL-10 after incubation with L4. We also identified CapG (a macrophage-capping protein) as a possible molecule that binds langerin by immunoprecipitation combined with a mass spectrometry analysis. We identified a portion of the CapG that was localized in the nucleus and binds to the promoter region of IL-6 and the TNFa gene in BMDCs, suggesting that CapG suppresses the gene expression of IL-6 and TNFa as an inhibitory transcriptional factor. To examine the effects of L4 in vivo, we also generated langerin-knockout mice by means of genome editing technology. In an emphysema mouse model, the administration of L4 did not mitigate the symptoms of emphysema as well as the inflammatory state of the lung in the langerin-knockout mice. These data suggest that the anti-inflammatory effect of L4 through the langerin-CapG axis represents a potential therapeutic target for the treatment of emphysema and COPD.


Assuntos
Dissacarídeos , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Camundongos , Dissacarídeos/farmacologia , Modelos Animais de Doenças , Interleucina-6/genética , Sulfato de Ceratano/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/genética , Enfisema Pulmonar/induzido quimicamente , Lectinas Tipo C/metabolismo
10.
PLoS One ; 18(6): e0287541, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352205

RESUMO

Chronic obstructive pulmonary disease (COPD) causes sarcopenia and osteoporosis. However, the mechanisms underlying muscle and bone loss as well as the interactions between muscle and bone in the COPD state remain unclear. Therefore, we herein investigated the effects of the COPD state on muscle and bone in mice intratracheally administered porcine pancreatic elastase (PPE). The intratracheal administration of PPE to mice significantly reduced trabecular bone mineral density (BMD), trabecular bone volume, trabecular number, cortical BMD and cortical area. It also significantly decreased grip strength, but did not affect muscle mass or the expression of myogenic differentiation-, protein degradation- or autophagy-related genes in the soleus and gastrocnemius muscles. Among the myokines examined, myostatin mRNA levels in the soleus muscles were significantly elevated in mice treated with PPE, and negatively related to grip strength, but not bone parameters, in mice treated with or without 2 U PPE in simple regression analyses. Grip strength positively related to bone parameters in mice treated with or without PPE. In conclusion, we showed that a PPE model of COPD in mice exerts dominant effects on bone rather than skeletal muscles. Increased myostatin expression in the soleus muscles of mice in the COPD state may negatively relate to a reduction in grip strength, but not bone loss.


Assuntos
Doenças Ósseas Metabólicas , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Camundongos , Suínos , Animais , Miostatina/genética , Elastase Pancreática/efeitos adversos , Enfisema Pulmonar/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Densidade Óssea/fisiologia , Músculo Esquelético
11.
BMB Rep ; 56(8): 439-444, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37357536

RESUMO

Emphysema is a chronic obstructive lung disease characterized by inflammation and enlargement of the air spaces. Regorafenib, a potential senomorphic drug, exhibited a therapeutic effect in porcine pancreatic elastase (PPE)-induced emphysema in mice. In the current study we examined the preventive role of regorafenib in development of emphysema. Lung function tests and morphometry showed that oral administration of regorafenib (5 mg/kg/day) for seven days after instillation of PPE resulted in attenuation of emphysema. Mechanistically, regorafenib reduced the recruitment of inflammatory cells, particularly macrophages and neutrophils, in bronchoalveolar lavage fluid. In agreement with these findings, measurements using a cytokine array and ELISA showed that expression of inflammatory mediators including interleukin (IL)-1ß, IL-6, and CXCL1/KC, and tissue inhibitor of matrix metalloprotease-1 (TIMP-1), was downregulated. The results of immunohistochemical analysis confirmed that expression of IL-6, CXCL1/KC, and TIMP-1 was reduced in the lung parenchyma. Collectively, the results support the preventive role of regorafenib in development of emphysema in mice and provide mechanistic insights into prevention strategies. [BMB Reports 2023; 56(8): 439-444].


Assuntos
Enfisema , Enfisema Pulmonar , Animais , Camundongos , Modelos Animais de Doenças , Enfisema/tratamento farmacológico , Interleucina-6 , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Elastase Pancreática , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Suínos , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Inibidor Tecidual de Metaloproteinase-1/uso terapêutico
12.
J Toxicol Environ Health B Crit Rev ; 26(5): 275-305, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37183431

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and its global health burden is increasing. COPD is characterized by emphysema, mucus hypersecretion, and persistent lung inflammation, and clinically by chronic airflow obstruction and symptoms of dyspnea, cough, and fatigue in patients. A cluster of pathologies including chronic bronchitis, emphysema, asthma, and cardiovascular disease in the form of hypertension and atherosclerosis variably coexist in COPD patients. Underlying causes for COPD include primarily tobacco use but may also be driven by exposure to air pollutants, biomass burning, and workplace related fumes and chemicals. While no single animal model might mimic all features of human COPD, a wide variety of published models have collectively helped to improve our understanding of disease processes involved in the genesis and persistence of COPD. In this review, the pathogenesis and associated risk factors of COPD are examined in different mammalian models of the disease. Each animal model included in this review is exclusively created by tobacco smoke (TS) exposure. As animal models continue to aid in defining the pathobiological mechanisms of and possible novel therapeutic interventions for COPD, the advantages and disadvantages of each animal model are discussed.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Poluição por Fumaça de Tabaco , Animais , Humanos , Poluição por Fumaça de Tabaco/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Fumaça/efeitos adversos , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/complicações , Enfisema/induzido quimicamente , Enfisema/complicações , Modelos Animais de Doenças , Mamíferos
13.
Phytother Res ; 37(9): 4251-4264, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37254460

RESUMO

Pulmonary inflammation induced by cigarette smoke (CS) promoted the development of chronic obstructive pulmonary disease (COPD), and macrophage polarization caused by CS modulated inflammatory response. Previous studies indicated that salidroside exerted therapeutic effects in COPD, but the anti-inflammatory mechanisms were not clear. This study aimed to explore the effects and mechanisms of salidroside on macrophage polarization induced by CS. Wistar rats received passively CS exposure and were treated intraperitoneally with salidroside at a low, medium or high dose. Lung tissues were stained with hematoxylin-eosin. Emphysema and inflammatory scores were evaluated by histomorphology. Lung function, cytokines, and cell differential counts in BALF were detected. The macrophage polarization was determined by immunohistochemistry in lung tissues. Alveolar macrophages (AMs) were isolated and treated with cigarette smoke extract (CSE), salidroside or inhibitors of relative pathways. The polarization status was determined by qPCR, and the protein level was detected by Western blotting. CS exposure induced emphysema and lung function deterioration. The inflammatory scores, cytokines level and neutrophils counts were elevated after CS exposure. Salidroside treatment partly ameliorated above abnormal. CS exposure activated M1 and M2 polarization of AMs in vivo and in vitro, and salidroside mitigated M1 polarization induced by CS. CSE activated the JNK/c-Jun in AMs and the M1 polarization of AMs was inhibited by the inhibitors of JNK and AP-1. Salidroside treatment deactivated the JNK/c-Jun, which indicated that salidroside mitigated the M1 polarization of AMs induced by CS via inhibiting JNK/c-Jun. Salidroside treatment ameliorated the pulmonary inflammation and M1 polarization of AMs induced by CS, and the process might be mediated by the deactivation of JNK/c-Jun.


Assuntos
Fumar Cigarros , Enfisema , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Ratos , Animais , Ratos Wistar , Pulmão , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Enfisema/metabolismo
14.
Regul Toxicol Pharmacol ; 142: 105412, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247649

RESUMO

This study aimed to evaluate long-term exposure to conventional cigarette smoke (CC) and electronic cigarette (EC) aerosol in adult male and female C57BL/6 mice. Forty-eight C57BL/6 mice were used, male (n = 24) and female (n = 24), both were divided into three groups: control, CC and EC. The CC and EC groups were exposed to cigarette smoke or electronic cigarette aerosol, respectively, 3 times a day for 60 consecutive days. Afterwards, they were maintained for 60 days without exposure to cigarettes or electronic cigarette aerosol. Both cigarettes promoted an influx of inflammatory cells to the lung in males and females. All animals exposed to CC and EC showed an increase in lipid peroxidation and protein oxidation. There was an increase of IL-6 in males and females exposed to EC. The IL-13 levels were higher in the females exposed to EC and CC. Both sexes exposed to EC and CC presented tissue damage characterized by septal destruction and increased alveolar spaces compared to control. Our results demonstrated that exposure to CC and EC induced pulmonary emphysema in both sexes, and females seem to be more susceptible to EC.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Enfisema Pulmonar , Produtos do Tabaco , Camundongos , Masculino , Animais , Feminino , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Camundongos Endogâmicos C57BL , Aerossóis e Gotículas Respiratórios , Pulmão/metabolismo , Produtos do Tabaco/efeitos adversos
15.
Bone ; 173: 116804, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37201674

RESUMO

The effect of the pathogenesis of chronic obstructive pulmonary disease (COPD) on bone fracture healing is unknown. Oxidative stress has been implicated in the systemic complications of COPD, and decreased activity of Nrf2 signaling, a central component of the in vivo antioxidant mechanism, has been reported. We investigated the process of cortical bone repair in a mouse model of elastase-induced emphysema by creating a drill hole and focusing on Nrf2 and found that the amount of new bone in the drill hole was reduced and bone formation capacity was decreased in the model mice. Furthermore, nuclear Nrf2 expression in osteoblasts was reduced in model mice. Sulforaphane, an Nrf2 activator, improved delayed cortical bone healing in model mice. This study indicates that bone healing is delayed in COPD mice and that impaired nuclear translocation of Nrf2 is involved in delayed cortical bone healing, suggesting that Nrf2 may be a novel target for bone fracture treatment in COPD patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Camundongos , Osso e Ossos/metabolismo , Osso Cortical/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Estresse Oxidativo , Enfisema Pulmonar/induzido quimicamente
16.
Food Chem Toxicol ; 177: 113795, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37116776

RESUMO

Cigarette smoke can enhance reactive oxygen species (ROS) production in inflammatory and epithelial cells. Subsequently, ROS enhance autophagy-induced inflammation due to alveolar macrophages (AMs), the primary source of cytokines implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Therefore, we hypothesized that grape seed proanthocyanidin extract (GSPE), an effective antioxidant, could inhibit emphysema and airway inflammation by ameliorating cigarette smoke extract (CSE)-induced autophagy via suppressing oxidative stress in macrophages. We observed that GSPE significantly attenuated histological changes observed in CSE-induced emphysema and airway inflammation in the lungs of mice. Moreover, GSPE ameliorated lung inflammation by reducing the number of cells, macrophages, and neutrophils and the tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 levels measured in bronchioloalveolar lavage fluid. ROS levels increased after CSE instillation and significantly decreased with in vitro GSPE treatment. GSPE decreased transcription factor EB (TFEB) oxidation by reducing ROS, inhibiting TFEB nuclear translocation. Furthermore, GSPE inhibited ROS-induced autophagy in RAW 264.7 cells, bone marrow-derived macrophages, and AMs. Inhibiting autophagy through GSPE treatment diminishes CSE-induced lung inflammation by inhibiting the NLRP3 inflammasome. This study demonstrates that GSPE can ameliorate CSE-induced inflammation and emphysema via autophagy-induced NLRP3 inflammasome regulation through the ROS/TFEB signaling pathway in a COPD mouse model.


Assuntos
Enfisema , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Camundongos , Animais , Espécies Reativas de Oxigênio/farmacologia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/prevenção & controle , Transdução de Sinais , Inflamação/tratamento farmacológico , Inflamação/patologia , Autofagia
17.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982887

RESUMO

COPD is a chronic lung disease that affects millions of people, declining their lung function and impairing their life quality. Despite years of research and drug approvals, we are still not capable of halting progression or restoring normal lung function. Mesenchymal stem cells (MSC) are cells with extraordinary repair capacity, and MSC-based therapy brings future hope for COPD treatment, although the best source and route of administration are unclear. MSC from adipose tissue (AD-MSC) represents an option for autologous treatment; however, they could be less effective than donor MSC. We compared in vitro behavior of AD-MSC from COPD and non-COPD individuals by migration/proliferation assay, and tested their therapeutic potential in an elastase mouse model. In addition, we tested intravenous versus intratracheal routes, inoculating umbilical cord (UC) MSC and analyzed molecular changes by protein array. Although COPD AD-MSC have impaired migratory response to VEGF and cigarette smoke, they were as efficient as non-COPD in reducing elastase-induced lung emphysema. UC-MSC reduced lung emphysema regardless of the administration route and modified the inflammatory profile in elastase-treated mice. Our data demonstrate equal therapeutic potential of AD-MSC from COPD and non-COPD subjects in the pre-clinical model, thus supporting their autologous use in disease.


Assuntos
Enfisema , Células-Tronco Mesenquimais , Enfisema Pulmonar , Animais , Camundongos , Elastase Pancreática , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/terapia , Células-Tronco Mesenquimais/fisiologia , Fenômenos Fisiológicos Respiratórios
18.
J Thorac Cardiovasc Surg ; 166(1): e23-e37, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36933786

RESUMO

OBJECTIVES: Pulmonary emphysema is characterized by the destruction of alveolar units and reduced gas exchange capacity. In the present study, we aimed to deliver induced pluripotent stem cell-derived endothelial cells and pneumocytes to repair and regenerate distal lung tissue in an elastase-induced emphysema model. METHODS: We induced emphysema in athymic rats via intratracheal injection of elastase as previously reported. At 21 and 35 days after elastase treatment, we suspended 80 million induced pluripotent stem cell-derived endothelial cells and 20 million induced pluripotent stem cell-derived pneumocytes in hydrogel and injected the mixture intratracheally. On day 49 after elastase treatment, we performed imaging, functional analysis, and collected lungs for histology. RESULTS: Using immunofluorescence detection of human-specific human leukocyte antigen 1, human-specific CD31, and anti--green fluorescent protein for the reporter labeled pneumocytes, we found that transplanted cells engrafted in 14.69% ± 0.95% of the host alveoli and fully integrated to form vascularized alveoli together with host cells. Transmission electron microscopy confirmed the incorporation of the transplanted human cells and the formation of a blood-air barrier. Human endothelial cells formed perfused vasculature. Computed tomography scans revealed improved vascular density and decelerated emphysema progression in cell-treated lungs. Proliferation of both human and rat cell was higher in cell-treated versus nontreated controls. Cell treatment reduced alveolar enlargement, improved dynamic compliance and residual volume, and improved diffusion capacity. CONCLUSIONS: Our findings suggest that human induced pluripotent stem cell-derived distal lung cells can engraft in emphysematous lungs and participate in the formation of functional distal lung units to ameliorate the progression of emphysema.


Assuntos
Enfisema , Células-Tronco Pluripotentes Induzidas , Enfisema Pulmonar , Ratos , Humanos , Animais , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/terapia , Enfisema Pulmonar/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais/metabolismo , Pulmão , Enfisema/induzido quimicamente , Enfisema/metabolismo , Enfisema/patologia , Elastase Pancreática/efeitos adversos , Elastase Pancreática/metabolismo
19.
Cancer Res ; 83(11): 1782-1799, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36971490

RESUMO

Pulmonary emphysema is a destructive inflammatory disease primarily caused by cigarette smoking (CS). Recovery from CS-induced injury requires proper stem cell (SC) activities with a tightly controlled balance of proliferation and differentiation. Here we show that acute alveolar injury induced by two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (N/B), increased IGF2 expression in alveolar type 2 (AT2) cells to promote their SC function and facilitate alveolar regeneration. Autocrine IGF2 signaling upregulated Wnt genes, particularly Wnt3, to stimulate AT2 proliferation and alveolar barrier regeneration after N/B-induced acute injury. In contrast, repetitive N/B exposure provoked sustained IGF2-Wnt signaling through DNMT3A-mediated epigenetic control of IGF2 expression, causing a proliferation/differentiation imbalance in AT2s and development of emphysema and cancer. Hypermethylation of the IGF2 promoter and overexpression of DNMT3A, IGF2, and the Wnt target gene AXIN2 were seen in the lungs of patients with CS-associated emphysema and cancer. Pharmacologic or genetic approaches targeting IGF2-Wnt signaling or DNMT prevented the development of N/B-induced pulmonary diseases. These findings support dual roles of AT2 cells, which can either stimulate alveolar repair or promote emphysema and cancer depending on IGF2 expression levels. SIGNIFICANCE: IGF2-Wnt signaling plays a key role in AT2-mediated alveolar repair after cigarette smoking-induced injury but also drives pathogenesis of pulmonary emphysema and cancer when hyperactivated.


Assuntos
Enfisema , Neoplasias Pulmonares , Enfisema Pulmonar , Humanos , Enfisema/metabolismo , Enfisema/patologia , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Pulmão/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética , Células-Tronco/metabolismo , Neoplasias Pulmonares/patologia
20.
COPD ; 20(1): 109-118, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36882376

RESUMO

Aberrant communication in alveolar epithelium is a major feature of inflammatory response for the airway remodeling leading to chronic obstructive pulmonary disease (COPD). In this study, we investigated the effect of protein transduction domains (PTD) conjugated Basic Fibroblast Growth Factor (FGF2) (PTD-FGF2) in response to cigarette smoke extract (CSE) in MLE-12 cells and porcine pancreatic elastase (PPE)-induced emphysematous mice. When PPE-induced mice were intraperitoneally treated with 0.1-0.5 mg/kg PTD-FGF2 or FGF2, the linear intercept, infiltration of inflammatory cells into alveoli and pro-inflammatory cytokines were significantly decreased. In western blot analysis, phosphorylated protein levels of c-Jun N-terminal Kinase 1/2 (JNK1/2), extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinases (MAPK) were decreased in PPE-induced mice treated PTD-FGF2. In MLE-12 cells, PTD-FGF2 treatment decreased reactive oxygen species (ROS) production and further decreased Interleukin-6 (IL-6) and IL-1b cytokines in response to CSE. In addition, phosphorylated protein levels of ERK1/2, JNK1/2 and p38 MAPK were reduced. We next determined microRNA expression in the isolated exosomes of MLE-12 cells. In reverse transcription-polymerase chain reaction (RT-PCR) analysis, level of let-7c miRNA was significantly increased while levels of miR-9 and miR-155 were decreased in response to CSE. These data suggest that PTD-FGF2 treatment plays a protective role in regulation of let-7c, miR-9 and miR-155 miRNA expressions and MAPK signaling pathways in CSE-induced MLE-12 cells and PPE-induced emphysematous mice.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Camundongos , Suínos , Elastase Pancreática , Fator 2 de Crescimento de Fibroblastos/genética , Células Epiteliais Alveolares , Enfisema Pulmonar/induzido quimicamente , Citocinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...